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1. INTRODUCTION

1.1 Background. Ply waviness, a manufacturing-induced anomaly in composite materials, is a subject
that has received considerable attention from the composites community (Adams and Hyer 1992; Bogetti
et al. 1991a, 1991b; Garala 1989; Highsmith et al. 1992; Hyer et al. 1988; Jortner 1984; Telgadas and
Hyer 1990). Ply waviness has been demonstrated experimentally, numerically, and analytically to
significantly reduce the mechanical performance of composite laminates and structures. Hyer et al. (1988)
and Telgadas and Hyer (1990) have combined analytic and numerical models to study ply waviness in
laminated composite cylinders for hydrostatic pressure load-bearing applications. Adams and Hyer (1992)
and Garala (1989) have experimentally demonstrated the deleterious effects ply waviness can have on the
mechanical performance of composite laminates and structures. Bogetti et al. (1991a, 1991b) have
developed linear-elastic analytic models to study the influence of ply waviness on stiffness and strength
reduction in composite laminates. The importance of shear material nonlinearity in wavy ply analyses has
also been recognized (Adams and Hyer 1992). In addition, interlaminar shear has been identified as at
least one dominant failure mechanism associated with ply waviness (Bogetti et al. 1991a, 1991b; Hyer
et al. 1988, Telgadas and Hyer 1990).

1.2 Problem Statement. In this work, analytic models are developed to predict the effective
three-dimensional nonlinear stress/strain mechanical behavior of two different types of wavy ply
geometries. These models can be used to quantify the synergistic effects ply waviness can have on the

mechanical performance of composite laminates and filament-wound structures.

The two wavy ply geometries ander investigation include a [90/0/90] configuration and a [90/+f/90]
configuration. A schematic illustrating ply waviness in the [90/0/90] configuration is shown in Figure 1a,
where an undulating [0] ply is embedded in [90] plies having straight fibers. A typical [+B] configuration
is presented in Figure 1b to illustrate the nature of the ply undulation at a tow or yarn crossover region
in a filament-wound structure. In the full [90/£f/90] configuration (shown later), the {+f] plies will be
embedded between two [90] plies. Both of these wavy ply geometries represent sublaminate
configurations which are commonly employed in filament-wound structures. The models developed in
this work portray realistic ply-level microstructural anomalies (waviness) characteristic of the filament

winding process.



(b) [£B] Model
Figure 1. Wavy ply geomctrics.

2. ANALYSIS

2.1 Geometry Definitions for the [90/0/90] Model. From the wavy ply configuriion depicted In
Figure 1a, a unit cell is first idealized (sce Figure 2a). A half-sinc wave segment of the undulation |a

selected as a representative element. Ply waviness is assumed to exist in the x-direation only. The length
of the unit cell is L, the total thickness is hy, and the un.plitude of the undulation is A, The unit cell
consists of an undulating (0] ply (ply 2), with thickness hy lying between two (90) ply reglona (plies )
and 3) The {90] plies are aligned in the y-direction and arc assumed to have no undulation,

Detailed mathematical descriptions of the individual ply surfaces within the unit cell, expressed as »
function of x, are required. Referring to Figurc 2a, the following equations are used to deflne the ply
surface distances from the laminate midplane along the half-sinc wave shaped undulation, where the firn
subscript denotes the ply number and the second subscript 7t or b) denotes the top or boitom ply surface,
respectively.
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(a) (90/0/90) Unit Cell (b) Out-of-Plane Orientation
Angle Definition
Figure 2, DJnit cell descriptions.
hjp () = - h)2
. ir L
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A local out-of-planc undulation angle, 0, is alsc needed. This local angle changes along the
undulation (f.c., is a function of x), but is assumed constant within any one “incremental” segment.
Refeering to Figme 2b, 6 can be defined as a function of x as

0 (x) = tan"! [.d_z] @
dx
where dx 18 the width of an incremental segment along the unit cell undulation in the x-direction and dz
1% the corresponding incremental change in ply surface height.

2.2 Qeometry Definitions for the [90/43/90] Model. The unit cell idealization of the crossover region

(inctuding the {9C) plies) is shown in Figures 3a and 5b. Geometric parameters of the unit cell are
quuniified by the winding angle, B, defincd with respect to the x-direction, the amplitude of the ply (tow
or yam) unculation {(assumed (0 be equal to hy), the total sublaminate thickness, h,, and the unit cell
length, F.. of the sinusoidal crossover region. An out-of-planc rotation angle, 8, at the crossover region




(a) Side View (b) Top View

Figure 3. [90/+3/90] umit cell.

is assumed o exist only in the [4p] plies. The [£P)] plies are embedded tetween two [90) plies of equal

and constant thickness (ig,) which are assumed to have no undulation,

Descriptions of the individual ply surfaces within the unit cell, expressed as a furiction of x, are also
required. Referring to Figure 3a, the following distances from the laminate midplane to the ply surfaces

along the half-sine wave-shaped undulations are defined

hy (x) = - hy

hyp () = = (hy + Lgo)

hy, () = [1 + sin (% [ - %m he/2
h,, () = -h +[1 +sin | F L
2b =- Ny sin T!* 7 he/2

hy, (x) = hy

h4! (X) = (hf + tgo) .




The local out-of-plane undulation angle, 8, for each of the [+p] plies is defined analogous to the [0] ply
in the [90/0/90] model presented in Figure 2b.

2.3 Laminate Analogy. The analysis presented below is generic in that it can be applied to ¢ach of
tke two types of wavy ply geometries described atove. The effective nonlinear mechanical behavior of
the unit cell is assumed to be representative of the response of the entire wavy ply configuration. The unit
cell is first divided into discrete incremental segments of equal width, dx, in the direction of undulation
(the x-direction). A systematic laminated media analogy is then applied to ¢ach individual segment before
the effective response of the entire unit cell is formulated.

An effective stress/strain constitutive relationship for each discrete segment within the unit cell is first
computed according to a three-dimensional laminated media analysis (Chou et al. 1972)

G,=CyE; for (j=1,273456).

The effective Ei i stiffness matrices in Equation 4 are defined according to the following relations

vic;

k xn 3

¢ . S Xia :
Ci3 C3;

k_ CinGyy |

x_ for (i,j=1,23,6), &)
R C k k ¢=n
33 C33 Y 1a1
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n Vk k
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C& Ca C ok ek
Ay = =Cy Css-Cys Csq» ®
ck ¢k
54 55

and n is the total number of plies in the segment, VX is the ratio of the thickness of the k'™ ply to the total
unit cell thickness (i.e., (hy,) — hy)/hy), and C} is the lamina stiffness matrix for the k™ ply in the
segment, which is defined in the global laminate (x-y-z) coordinate system and therefore accounts for any
rotations (in-plane and/or out-of-plane) due to ply waviness. Tensoral rotations are used to compute the
Ci*s from the typical engineering constants of the straight lamina (i.e., Ey, E, E3, V13, V3, V23, Gy, Gy,
and G,,) and corresponding rotation angles between the global laminate (x-y-z) and principal material
(1-2-3) coordinate systems (Lehknitski 1963).

The local h; values of the plies (within each segment) are defined by Equation 1 for the [90/0/90]
model and Equation 3 for the [90/£p/90] model. The Ci'j"s for the [90] plies (in both models) are constant
along the x-direction. The CJ's for the [0} and [:B) plies, however, must take into account the
out-of-plare (8(x)) orientations which vary along the unit cell. For example, segments in the [90/0/50]
model are represented by a three-ply laminate having out-of-plane rotations (8(x)) in the Ci'j‘ matrices for
the [0} ply, Cijz-(x). Segments in the [90/+f/90] model are represented by a four-ply laminate having both
in-plane (£B) rotations and out-of-plane (8(x)) rotations in the CJ marices for the (£B) plies, C3(x), and
Ci?(x). Compliance matrices, 's;;, for each dx segment within the unit cell are then computed through

matrix inversion of the segment stiffness matrices, Cy;.

2.4 Nonlinear Lamina Constitutive Relations. Material nonlinearity is introduced in the principal
shear directions of the lamina constitutive relations, 23, 13, and 12. All other mechanical properties are
assumed constant. The Ramberg-Osgood Equation is adopted here to represent material nonlinearity
(Richard and Btackloak 1969). The three-parameter equation relating stress explicitly as a continuous
function of strain is given by

Ty = G°v )

a+(G° -y P




where G° is the initial linear shear modulus, t° is an asymptotic shear stress value, and p is a shape
parameter.

Taking the derivative of Equation 9 with respect to strain yields an expression for the tangent
modulus, G,, as a continuous function of strain

o,
G, = L A

d‘r a+ (G o, .Y"o) p)hllp ’

Equation 10 is a convenient expression for determining the tangent or instantaneous shear moduli of the
lamina within the wavy ply configuration. By continuously monitoring the principal shear strain level of
each ply within each segment during incremental loading, the instantancous moduli can be computed
straightforwardly.

2.5 Incremental Formulation. The theoretical basis for the nonlinear incremental formulation is the
“"linear" analysis outlined above. The approach is to incrementally apply loads (defined in terms of
average three-dimensional stresses) to the unit cell until the desired load level is reached. The Full
Newton-Raphson Method is the incremental solution technique adopted in the analysis (Bathe and Cimento
1980). Solution convergence is based on a force tolerance criteria.

At the beginning of each load step, the instantaneous lamina properties for all plies in each segment
of the unit cell are computed according to Equation 10, All other lamina properties are assumed constant.
The instantaneous shear properties computed from Equation 10 are based on the current principal ply
strain levels at the beginning of the load step. The instantaneous shear moduli will vary from ply to ply
within a given segment and will also vary from segment to segment along the unit cell, depending on the
local strain distributions. Once the tangent shear moduli are determined, the instantaneous compliance
matrix, ‘s'ij. for each of the segments within the unit cell are computed, as outlined above. The effective
incremental strains for each individual segment, due to an applied load increment, A Tsj, are computed

according to

a1n




where the superscript k is used here as an index to denote the segment number. Notc that the

superscript k is not used on the load increment AG;, since it is assumed constant for all the segments

within the unit cell. For each applied load increment, the effective strain increment for the entire unit cell
is computed as the sum of all the segment strains by

m
AT =Y A%, (12)
k=l

where m denotes the total number of segments in the unit cell.

The incremental strategy used calls for the application of equal and successive load ir..._ments, AG;,
to the unit cell and a continuous monitoring of the resulting strain increments within the unit cell. For
each load step that is applied to the unit cell, a piecewise linear increment in unit cell strain is computed
according to Equations 11 and 12. The nonlinear behavior of the wavy configuration is represented by
an effective (average) stress-strain curve generated from the unit cell response to incremental loading. The
total average stress at any point during the incremental loading is defined as the cumulative sum of ail

prior load increments applied to the unit cell. Mathematically, the total average stress acting on the unit
cell, AB'}‘ (for example, after nls load steps), is given by

T nls k

where the superscript k is used here as an index to denote the load increment. The corresponding total
effective unit cell strain, T-:'?, is defined as the cumulative sum of all prior unit cell strain increments up
to the current load level. For example, afier nls load increments, the total unit cell strain is defined by

nls
_T —k
E; -kz-; AT ;. (14)

The effective stress/strain behavior of the unit cell is therefore defined by the relationship generated
between '6}‘ and 'é'}. over the prescribed load path history.




2.6 Failyre Criteria. The maximum stress failure criteria is employed in the analysis. During the
incremental loading, the total principal stress levels within each ply of each scg'mem are calculated. When
the principal stress level in a ply reaches the value of its corresponding allowable, as defined in the
maximum stress failure criteria, the modulus associated with that ply and failure mode is sct arbitrarily
small for subsequent calculations. Accordingly, the ply retains its current stress level, but is prevented
from carrying additional stress during subsequent incremental loading.

3. RESULTS

3.1 Input Summary. Wavy model input parameters required in the analysis include the material
properties of the composite, Cie unit cell geometric parameters, and details of the incremental load
strategy. An ..84/PEXK graphiiethermoplastic composite material system is used to illustrate the
findings. Material properties and strength allowables for AS4/PEKK are listed in Tables 1 and 2,
respectively. The Ramberg-Osgood parameters used to represent the nonlinear shear response of the
AS4/PEKK system in the 23, 13, and 12 principal shear directions are summarized in Table 3. The
corresponding shear stress/strain curves are presented in Figure 4. For this analysis, the asymptotic stress
values are assumed to be equal to their corresponding ultimate strength allowables.

Table 1. Material Properties for AS4 Graphite/PEKK

{MPa) 1.17 x 10°

(MPa) 9.66 x 10°

(MPa) 9.66 x 10°
0.36
0.36
0.36

The incremental strategy requires one to define a load step size, AG;, and the total number of load

increments to be applied. As with most incremental numerical techniques, solution accuracy is improved
by decreasing the load step size. It is noted that convergence studies were conducted for all the examples

presented in this work to ensure accurate numerical results.




Table 2. Strength Allowables for AS4 Graphite/PEKK

XIT (MPa) 197 x 10°
X2T (MPa) 3.59 x 10!
X3T (MPa) 3.59 x 10!
X1C (MPa) 1.07 x 10°
X2C (MPa) 1.83 x 10?
X3C (MPa) 1.83 x 1?
s12 (MPa) 1.31 x 10?
s13 (MPa) 7.59 x 10!
$23 (MPa) 3.79 x 10!

Table 3. Ramberg-Osgood Shear Parameters for AS4/PEKK

G, (MPa) 6.76 x 10°
Gl (MPa) 6.76 x 10°
G (MPa) 4.3 x 10°
1%, (MPa) 1.31 x 102
1) (MPa) 7.59 x 10!
2 (MPa) 3.79 x 10
| 2.0
Py 2.0
Py _ 20

3.2 [90/0/90] Model Predictions. The first case study employs the {90/0/90] wavy model with the
following geometric parameters; L = 0.127 cm, he = 0.0127 cm, h, = 0.0381 cm, and A = 00127 cm. The
unit cell configuration is incrementally loaded in uniaxial compression in the x-direction until ultimate

failure. The following sections discuss the findings of this case study.

10
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Figure 4. Nonlinear lamina shear gtress/strain response for AS4/PEKK.

3.2.1 Comparison With Linear Analysis Predictions. The effective x-direction unit cell stress/strain
response is first examined. A linear-elastic version of this example was conducted to provide a baseline
for comparison wiih the nonlinear predictions. The shear moduli employed in the linear case are the
Ramberg-Osgood initial shear moduli (see Table 3). The lincar and nonlinear x-direction stress/strain
response predictions of the unit cell are presented in Figure S. Failure in the linear case is reached when
any principal ply stress component, in any segment, reaches its corresponding strength allowable (see
Table 2). Failure in the nonlinear case is reached when the unit cell can no longer sustain additional
incremental loading (load divergence is detected). As expected, the stress/strain responses are similar at

low levels of strain and diverge at higher strain levels, where nonlinear material softening occurs. The

ultimate load levels are markedly different (195 MPa and 312 MPa for the linear and nonlinear cases,
respectively). The failure mechanism in the linear case is interlaminar shear stress failure, G4, Which
occurs in the segment of the wavy configuration with the greatest ply undulation (maximum shear stress).
In the nonlinear analysis, the interfaminar shear ply stress, 6,4, does not reach its ultimate but rather
approaches it asymptotically. Consequently, the wavy configuration is permitted to bear load well beyond
the load level predicted to cause failure in the lincar analysis. As the additional load is applied, the
nonlinearity of the strain response increascs, to a point where divergence is detected (312 MPa). The
following sections help to identify the fundamental mechanisms contributing to the overall nonlinear

response of the wavy unit cell configuration.
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3.2.2 Development of Segment Strain Distributions. Under the constant average stress assumption,
the segment strains which develop during incremental loading are cxpected to vary along the unit cell,
peakiag where the local out-of-plane [0] ply undulation angle is a maximum, at x = L /2, The
development of nonlinear segment strain distributions within the unit cell is demonstrated in Figure 6 at
load levels between 69 MPa and 276 MPa. Note that the large strains (nonlincar) begin to develop in
segments with greater ply undulation and that they become increasingly more nonlinear with increasing
load. This increased nonlinear behavior is due to the fact that as the interlaminar shear strains increase,
the corresponding tangent moduli decrease and reduce the local compliance matrices within the segments.

3.2.3 Influence of Undulation Amplitude on the Nonlincar Response. The influence of undulation
amplitude on the nonlinear x-direction stress/strain response of the [90A¥90] model (with the same
geometric parameters and under the same loading condition as described above) was also examined. In
Figure 7, the x-direction stress/strain responses of wavy unit cell configurations with undulation auplitudes
A = 0.00000 cm, 0.00635 cm, and 0.01270 cm are presented. Note that the case for A = 0.00000 cm is
linear to failure and is identical to what would be predicted by classical laminate analysis (524.8 MPa).
This is the expected result since there are no undulation or nonlinear effects in this case. Comparing the

12




—89 MPs
- =138 NP2
-=--207 WPa

o

-

P
~
o

o
w

Segment Strein (%)

-n
[ d
]

0.2 0.4 0.6 0.9
Distance Along Unit Ceil, 2w/l

Figure 6. Development of segment strains withiq the I uniaxial compression.
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uniaxial compression.




other cases, it is shown that the ultimate unit cell strength decreases significantly with increasing
undulation amplitude. It is noted, however, that these ultimate strengths are significantly higher than those
predicted by the linear wavy analysis because of the previously discussed reasons (Figure 5).

3.3 [90/+B/90] Crossover Model Predictions. In our second case study, we present a comparison of
the nonlinear and linear analysis predictions for the [90/+p/90] crossover model. In Figure 8, the
nonlinear and lincar stress/strain responses of the [90/1B/90] crossover model for B = 64°, 49°, and 20°
are presented. The linear and nonlinear predictions of the initial moduli for the respective models are in
good agreement. This is expected since at low load levels, lincar material behavior is dominant. As with
the [90/0/90) wavy model, the nonlinear analysis predicts significantly higher ultimate strength values than
those of the linear analysis. Again, this is due to the fact that the dominant failure mechanism of the
linear analysis, interlaminar shear failure, does not constitute catostrophic failure in the nonlinear analysis.
It is noted that thes: [90/+p/90] crossover configurations exhibit substantially more nonlinearity than the
[90/0/90) wavy configuration. This is due to the fact that the in-plane shear loading of the [+f}] plies
contribute an additional source of nonlinearity.

-
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Figure 8, Nonlinear stress/strain response of the [90/48/90] cross-over model under uniaxial
compression. _




4. CONCLUSIONS

An analytic model, based on a three-dimensional laminated media analysis, was developed to predict

the effective nonlinear laminate behavior associated with ply waviness. An undulating [0] ply in a
(90/0/90] sublaminate configuration and an undulating [£f] ply in a [90/+p/90) sublaminate configuration
were two types of ply waviness considered. An incremental loading s.2tegy was employed wherein
piecewise linear solutions were superimposed to obtain the overall nonlinear stress/strain response of

composite laminates with wavy plies.

The influence of ply waviness with nonlinear shear material response on the mechanical performance
of composite laminates was studied. The nonlinear analysis revealed significant nonlinearity in the
stress/strain response of both the wavy ply and crossover region configurations investigated. This
nonlinear response was largely due to severe nonlinear straining in regions of the configuration where ply
undulation was greatest. ‘This is brought about by the decreasing tangent shear moduli associated with
high shear straining within undulating plies. Strain distributions with the wavy ply configuration showed
that segment strains in regions of the configuration with large ply undulations strained significantly more
than segments with no undulation, which exhibited the usual linear response. At low load levels, the
nonlinear and linear overall stress/strain responses for both the wavy ply and crossover configurations were
similar. The most significant finding of the nonlincar analysis was that nonlinear ultimate strength
predictions for the wavy ply and crossover configurations were significantly higher than linear predictions.
Interlaminar shear is the dominant failure mechanism in the linear analysis strength predictions. In the
nonlinear analysis, this failure mechanism does not constitute ultimate failure. Loading is permitted to
continue as loads are redistributed to adjacent plies. This redistribution of load results in ultimate strength
predictions for the nonlinear analysis as much as twice that predicted in the linear analysis. The models
developed in this work portray realistic ply-level microstructural waviness characteristic of the filament
winding process and therefore can be used to quantify the synergistic effects ply waviness can have on

the mechanical performance of filament-wound structures.
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